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MiniBooNE goal: Verify/refute LSND signal.
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Implies a mixing with ∆m2 1eV2

Not compatible with other ∆m2.

Exciting possibilities for new physics!

Sterile neutrinos hep-ph/0305255

Neutrino decay hep-ph/0602083

Lorentz/CPT violation hep-ex/0506067

� LSND found excess νe in a νµ beam.
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MiniBooNE goal: Verify/refute LSND signal.
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Projected sensitivity to the LSND signal in MiniBooNE.

With data already acquired... � Close to 3σ coverage of LSND 90% CL.

� MiniBooNE differs from LSND in
several ways

� L � 540 m ( � 10 � LSND)

� E � 500 MeV ( � 10 � LSND)

� νµ (νµ in LSND)

� Signal/background composition at:

∆m2 � 1 � 0eV2

� sin2 2θ � 0 � 004
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First ν detector to use pure mineral oil.

Michel e

�

time distribution

Time of PMT Hit (Vertex corrected) [ns]
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� Makes for a fairly complex optical model (OM).

� In a water-detector, the Cerenkov light
dominates (easy to calculate).

� In a doped-detector, the scintillation
dominates (

�

Ai � τi

�

well-known).

� In pure mineral oil, natural absorption and
emission are not as well-known.

So, why use pure mineral oil?

Electrical insulator, not the “root of life”.
n 1 47 provides about 24% more
Cerenkov light than water.

Primarily need clear Cerenkov ring for
distinguishing νe from νµ.

A small amount of scintillation allows us to
see nuclear recoils and neutral-current (NC)
interactions.

νµ νµ

z
n n

νµ νµ

z
p p

NC Elastic Interactions
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First ν detector to use pure mineral oil.
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� In a water-detector, the Cerenkov light
dominates (easy to calculate).

� In a doped-detector, the scintillation
dominates (

�

Ai � τi

�

well-known).

� In pure mineral oil, natural absorption and
emission are not as well-known.

� So, why use pure mineral oil?

� Electrical insulator, not the “root of life”.

� n � 1 � 47 provides about 24% more
Cerenkov light than water.

� Primarily need clear Cerenkov ring for
distinguishing νe from νµ.

� A small amount of scintillation allows us to
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A correct OM is important for robust PID.

� We have to identify a handful of νen � e

�

p in a
sea of νµn � µ

�

p.

� Also have mis-ids from νµn � νµ∆0 � π0n

� Because of residual uncertainties in the optical
model, prior physics results have been reported
with large systematic errors.

� Should be possible to make the OM systematic
errors a small part of the overall error.

νµ Charged-Current Quasi-Elastic (CCQE)
Relative Cross-section
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Initial optical properties defined by external measurement.

Time response to 200 MeV protons
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� Sources of light

� Cerenkov light produced by particles with
v

�

cmedium

� 1.

� Scintillation light from charged-particles
stimulating the mineral oil

� Fluorescence from Cerenkov light that is
absorbed and re-emitted.

� Tank effects

� Reflection from tank walls, PMT faces, etc.

� Scattering (Raman and Rayleigh) off the
mineral oil.

� PMT properties
� Single pe charge response

� Charge linearity

� Time distributions

� External measurements were made for almost all of the various properties.

� Sometimes hard to set relative amplitudes between measurements.

� Some measurements in conflict...worry about contamination of oil, etc.

� All measurements have some residual uncertainty.

� Solution: Build as complete an OM as possible and turn to tank calibration data to refine
oil properties. Chris Polly, CIPANP ’06 – p.6/14



Refining the OM using in situ calibration sources.
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� Stopping cosmic muons pro-

vide an abundance of Michel
decay electrons.

νµ
−w

µ

νe
−

−

−e

� We are able to quickly simulate
many Michel decays.

� We run MC excursions of 1
OM parameter (“unisim”) and
use the derivatives with central-
value MC to fit tank data.

� Monte Carlo simulation proceeds in “baselines” where the code is updated to include all
improvements and new samples are run for analyzers.

� From Mar05 to Nov05 the dominant OM change was to the extinction length.

� As a function of R and U � r, the data/MC energy distribution is now flat to within 2% in a
5 m fiducial volume..
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Tuning the scintillation components

�

Ai � ti
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� As a general rule, we do not tune
the OM with ν data.

νµ νµ

z
p p

� The exception: NC elastic
interactions

� NC not a significant part of
the oscillation
signal/background.

� Sub-Cerenkov p produce
only scintillation

� The plot shows the fraction of light emitted in the Cerenkov time window vs number of
PMT hits (energy).

� As the energy of the ν interaction increases, the recoil proton becomes more
Cerenkov-like resulting in the rising fraction.

� Large improvement between the Nov05 and Apr06 baselines.
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Back to Michels for constraints from topology
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� “Backwards fraction” is the fraction of
light detected opposite of the Cerenkov
cone.

� This fraction is sensitive to scintillation,
fluorescence, and scattering.

Plotted as a function of corrected time it
is sensitive to various time components
of the OM.

The ratio of data to MC shows a 25%
deficit of isotropic light in the Cerenkov
window.

Large improvement from Apr06(red) to
May06 baseline(blue).
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Check OM with independent calibration source.

� Laser light of a fixed λ � 398 nm
emitted from laser flasks suspended
in tank.

� No Cerenkov, scintillation, or
fluorescence.

� Tests reflection, scattering, and
PMT response.

� Data/MC agreement in the May06
baseline is spectacular.
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The improvement in the OM is apparent in the ν analyses.

� Certain variables can be constructed that are useful for extracting a particular interaction
in the tank.

� Here are a few from the νµ CCQE analysis:
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� You can imagine calculating a “χ2” between data and MC...
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χ2 distribution for an ensemble of 318 variables.

� The same 318 variables were used to produce each of the χ2 distributions.

� Each plot is made only from a subset of events with cuts that prefer:

� Michel decay electrons from beam events

� Charged-current, quasi-elastic νµ interactions.

� Charged-current interaction with a π

�

in the final state.

� All sample show a remarkable improvement in the simulation.
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Outlook for MiniBooNE

� I hope I have demonstrated substantial improvements
that have been made over the course of the last year.

� The optical model is not the only area of the analysis
that has progressed.

� Recent improvements in understanding the
absolute normalization, largely due to new HARP
results.

� Development of two analyses

� Likelihood-based (simple to understand).

� Boosted-decision tree (maximum sensitivity).

� Progress in understanding how to propagate a
full statistical and systematic error.

� We are sensitive to the desire of the community to see
our result, but the payoff for the wait can really be mea-
sured in sensitivity and the ultimate errors on our cross-
sections.

νµ CCQE Relative Cross-Section

 (GeV)   QE 
 ν E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Data

 Errorsσ, ΦMC:  

 Errors + σ, ΦMC:  

    Optical Model

    Variations

)  
 2 

 (GeV 2 Q

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3
Data

 Errorsσ, ΦMC:  

 Errors + Opticalσ, ΦMC:  

    Model Variations

Chris Polly, CIPANP ’06 – p.13/14



Normalization

� The MiniBooNE Run Plan reported we were seeing 1.5 times as many events as the
Monte Carlo predicted.

� For an inclusive ν sample.

� This normalization difference is now 1.2

� Major changes in rate prediction since Run Plan (not complete list) ...

� -3.5% from better ν cross-section modeling

� +17.5% from better modeling of incoming proton beam

� +5.2% from CCQE cross-section tuning (MA extraction)

� -6.0% from better modeling of secondary beam interactions

� +16.2% from HARP π

�

+ horn current + better modeling of primary proton
interactions

� After a huge amount of cross-checking the agreement between data and MC ν rates is
now far less of an issue
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